Нанокристаллические оксиды металлов для газовых сенсоров

Гаськов А.М.

e-mail: gaskov@inorg.chem.msu.ru

Химический факультет МГУ им. М.В.Ломоносова

Волькенштейн Ф.Ф. – Электронные явления в адсорбции и катализе на полупроводниках, 1969 Мясоедов Б.Ф., Давыдов А.В. Химические сенсоры, возможности и перспективы. ЖАХ 1990. Власов Ю.Г. Твердотельные сенсоры в химическом анализе. ЖАХ. 1990 Мясников И.А., Гутман Э.Е. "Полупроводниковые сенсоры в физико-химических исследованиях", 1991г.

Золотов Ю.А. Аналитическая химия в ИОНХ. ЖАХ, 1995.

Зонная структура полупроводника в условиях адсорбции

Механизм газовой чувствительности полупроводников : SnO_2 , ZnO, WO_3 , In_2O_3

- адсорбция на поверхности
- реакции на поверхности
- электронный транспорт
- диффузия кислорода

Сенсорный сигнал - изменение электропроводности

Сенсоры C₂H₅OH

Предельно допустимые концентрации

НАНОТЕХНОЛОГИЯ

Размер частиц (a/V)

Природа центров (m_{ads})

Сенсорный сигнал

Селективность

Стабильность

Структура поверхности

- Льюисовские кислотные центры: катионы Sn⁴⁺ и межкатионные позиции Sn²⁺-Sn²⁺
- Адсорбированный кислород: O₂(s), O⁻²(s), O⁻(s)
- Гидроксильные группы

Основные ограничения полупроводниковых оксидов: ZnO, SnO₂, In₂O₃,WO₃

Пути улучшения сенсорных свойств материалов

Негомогенные нанокристаллические

системы

(нанокомпозиты M¹O / M²O)

 $M^1O - SnO_2$, In_2O_3 , WO_3 , ZnO $M^{2}O - V_{2}O_{5}$, $Fe_{2}O_{3}$, MO_{3} , $La_{2}O_{3}$, CeO₂

СИНТЕЗ НАНОКОМПОЗИТОВ

физические методы: лазерное нанесение, магнетронное нанесение,

химические методы: методы коллоидной химии, золь-гель

<u>Синтез, химическое осаждение из растворов</u>

Микро - нано- структура

SEM / film clivage

TEM / film clivage

STM / surface image

film thickness 0.5 – 3 μm crystallite size 5-10 nm

250 nm

Особенности нанокристаллических материалов: размерный эффект

TEM image

XRD data

XRD + TEM + SAED

Фазовый состав Система SnO₂ – MoO₃

Phase β -MoO₃

Состав, распределение по глубине

1. C

Time / s

Лабильность — состояние кластеров Pt на поверхности SnO_2 -PtO₂ (XAS)

1 D - Нано кристаллы (нити)

Величина удельной поверхности

Электрические свойства

Сенсорный сигнал к NH₃

Сенсорные свойства и механизм реакции окисления этанола

CH₃

CH₃

Природа кислотных центров и сенсорный сигнал к этанолу

Обратимые реакции на поверхности нанокомпозита SnO₂+CuO (H₂S)

Механизм возникновения сенсорного сигнала в системе SnO₂+CuO (H₂S)

Создание мембран

Микроструктура мембран

TEM: Jeol FX-2010, 200 κV Al₂O₃(Pt 6%)/SnO₂(Pd) SnO2(Pd) ~ 900 нм Al2O3(Pt 6%) ~ 50 нм

Влияние мембран (H₂)

Влияние мембран (СО)

Предварительное концентрирование

SfP 982166

- bimodal pore distribution
- tunable porosity: 4 500 Å
- tunable hydrophylicity/hydrofobicity
- tunable acidity/basicity
- high thermal and hydrothermal stability (up to 700°C)
- regenerability

High activity and selectivity for separation and concentration

Синтез

Состав

- элементный
- фазовый
- поверхности
- распределение по толщине

Структура

- кристаллическая структура
- размер кристаллита
- размер пор
- величина удельной поверхности

Электрические свойства • электронный транспорт

Реакционная способность

- хемосорбция
- поверхностные реакции

Сенсорные свойства

чувствительность, селективность, стабильность